
FACULTY OF COMPUTING AND TELECOMMUNICATION

Institute of Computing Science

Bachelor’s thesis

PERFORMANCE EVALUATION AND MODELING OF

MICROSERVICE-BASED CLOUD SYSEMS

Mateusz Dębski, 148216

Michał Dropiewski, 148189

Mikołaj Felczyński, 147400

Kacper Wiśniewski, 144591

Supervisor

Professor Maciej Drozdowski

POZNAŃ 2024

Uczelnia: Politechnika Poznańska Profil studiów: Ogólnoakademicki

Kierunek: Informatyka Forma studiów: Stacjonarne

Studia w zakresie: - Poziom studiów: Pierwszego stopnia

Zobowiązuję/zobowiązujemy się samodzielnie wykonać pracę w zakresie wyspecyfikowanym niżej. Wszystkie elementy (m.in. rysunki, tabele, cytaty, programy
komputerowe, urządzenia itp.), które zostaną wykorzystane w pracy, a nie będą mojego/naszego autorstwa będą w odpowiedni sposób zaznaczone i będzie podane źródło
ich pochodzenia.

Jeżeli w wyniku realizacji pracy zostanie dokonany wynalazek, wzór użytkowy, wzór przemysłowy, znak towarowy, prawa do rozwiązań przysługiwać będą Politechnice
Poznańskiej. Prawo to zostanie uregulowane odrębną umową.
Oświadczam, iż o wyniku prac wskazanych powyżej, a także o innych, w tym tych, które mogą być przedmiotem tajemnicy Politechniki Poznańskiej, niezwłocznie
powiadomię promotora pracy.
Zobowiązuję się ponadto do zachowania w tajemnicy wszystkich informacji technicznych, technologicznych, organizacyjnych, uzyskanych w Politechnice Poznańskiej
w okresie od daty rozpoczęcia realizacji prac do 5 lat od daty zakończenia wykonania prac.

 Imię i nazwisko Nr albumu Data i podpis

Student: Mateusz Dębski 148216

Student: Michał Dropiewski 148189

Student: Mikołaj Felczyński 147400

Student: Kacper Wiśniewski 144591

Tytuł pracy: Ocena i modelowanie wydajności systemów chmurowych opartych na mikroserwisach

Wersja angielska
tytułu: Performance evaluation and modeling of microservice-based cloud sysems

Dane wejściowe: Literatura na temat systemów chmurowych, aplikacji wykorzystujących mikroserwisy, benchmarku Death Star,
systemu Jaeger, Open Tracing, docker.

Zakres pracy:

Opracować oprogramowanie wizualizujące wydajność czasową łańcuchów wywołań mikroserwisów
obsługujących żądania wykonania usługi na podstawie zebranych logów. Opracować moduł szacujący czasy
transferu między mikroserwisami. Opracować metodę szacującą czas obsługi na podstawie intensywności
ruchu.

Termin oddania
pracy: 31.01.2024

Promotor: prof. dr hab. inż. Maciej Drozdowski

Jednostka
organizacyjna

promotora:
 Instytut Informatyki

podpis dyrektora/kierownika jednostki organizacyjnej promotora data i podpis Dziekana

Karta
pracy dyplomowej inżynierskiej

Contents

1 Introduction 1

1.1 The purpose and scope of the thesis . 2

1.2 Tasks distribution . 2

1.3 Chapters contents . 3

2 Performance evaluation for modern IT infrastructure 4

2.1 Features of modern infrastructure and architecture solutions 4

2.1.1 Microservices . 5

2.1.2 Distributed systems - clusters . 5

2.1.3 Cloud . 5

2.2 Benchmarking . 5

DeathStarBench . 6

2.3 Tracing . 7

2.3.1 Trace . 7

2.3.2 Span . 7

2.3.3 Traces and spans visualized . 7

2.3.4 Jaeger Tracing . 8

2.3.5 OpenTracing . 9

2.3.6 OpenTelemetry . 10

3 Tools and input analysis 11

3.1 Schema of creating data to visualization . 11

3.2 Data to visualize . 12

3.2.1 Data from Jaeger . 12

3.2.2 Relations between spans and traces . 13

3.2.3 Groups of traces . 13

3.3 Transfer times . 14

3.3.1 The problem of communication time . 15

3.3.2 What is the communication time? . 15

3.3.3 How to calculate transfer time? . 15

4 Project 17

4.1 Functional and Non-functional requirements . 17

4.1.1 Functional requirements . 17

4.1.2 Non-functional requirements . 17

4.2 System architecture . 18

4.2.1 Context diagram . 18

4.2.2 Use cases . 19

I

II

4.3 System architecture . 21

4.4 Interface mockup . 21

4.5 Testing . 22

5 Implementation and tests 24

5.1 Used technologies . 24

5.1.1 Docker . 24

5.1.2 GitHub . 24

5.1.3 Python . 24

5.1.4 Flask . 25

5.1.5 JavaScript . 25

5.1.6 React.js . 25

5.1.7 React-Vis . 25

5.1.8 D3.js . 25

5.2 Installation . 26

5.3 Usage and logic . 27

5.3.1 Header . 27

5.3.2 Input . 28

5.3.3 Scatter plots . 29

5.3.4 Histograms . 30

5.3.5 Call Graph . 38

TraceCallGraph . 38

GroupCallGraph . 39

Implementation . 41

5.3.6 Table . 41

5.4 Discovered artifacts . 43

5.4.1 Negative transfer times . 43

5.4.2 Invalid parent span . 43

5.5 Transfer time . 45

5.5.1 Calculation of transfer times . 45

5.5.2 Transfer times graph visualization . 46

5.6 Testing . 47

5.6.1 Functional correctness . 47

5.6.2 Performance . 47

6 Conclusions 50

6.1 Projects plans . 50

Bibliography 52

Chapter 1

Introduction

One could say that today’s world is very digitalized. An average citizen that lives in a relatively

well-developed country uses dozens of various apps and visits tens of websites daily. From their

perspective it’s easily accessible, everything works smoothly, providing countless features and hours

of entertainment - all while working as if out of thin air. The ”out of thin air” part, however, isn’t

what words literally say. Every online application, regardless of it’s size or amount of traffic it

receives, has to be backed by appropriate infrastructure with certain software architecture. Both

have immense impact on the app performance, thus influencing user experience - regardless if we

are talking about speed, availability or fault tolerance.

When designing or setting up the infrastructure for an application, there are multiple factors

to consider. One of the most crucial aspects that engineers ought to take into account is the

required hardware performance. It’s also desirable to have the ability to test the general capacity

of said infrastructure, although performance can be a difficult thing to measure in a meaningful

and comparable way. Luckily, there are solutions in place - there are specialized pieces of software,

capable of performing standardized tests on processors, memory, etc. This type of software is

called a benchmark. Results of those benchmarks are not only useful for consumers trying to

decide what piece of hardware they should pick. They are also indispensable for hardware com-

panies that strive to improve their products. Measurable scores that represent performance of the

given hardware allow those companies to validate their progress, market the products and compare

them against competition. There are tons of solutions in place that are designed to benchmark

single hardware units, but modern infrastructure behind the web and mobile applications requires

a different approach. This infrastructure often works in a distributed manner - there is no one

single machine that does everything, there are multiple ones that try to act and work as unity. The

software that runs on this infrastructure tends to be distributed too - microservice architecture

paradigm, where the software is divided into smaller, independent computing units is increasingly

popular. Because of that, it is desirable to have a benchmark tool capable of testing a production

environment for a modern, distributed, microservice-based application. In fact, there are already

tools designed specifically for this purpose. DeathStarBench [25] is a widely used benchmark

that simulates a microservices application and it can be run on distributed system. After deploying

the benchmark, it generates artificial traffic and gathers performance statistics. The fact that it’s

used across numerous organizations all over the world proves that it’s a valuable tool, but as many

benchmarks, it doesn’t always paint the full, true picture of the system.

While it’s great to have a general idea of infrastructure performance, there are some use cases

1

1.1. The purpose and scope of the thesis 2

that require deeper insight. Performance tuning, searching for bottlenecks or troubleshooting are

very challenging tasks in a simpler, monolithic architecture. Attempting it on a distributed system

where applications are organized into microservices and just one request can cause a whole chain

reaction of microservice calls is nigh to impossible without access to data and adequate tools. In

fact, the lack of tools seems to be the main issue. There are projects like Jaeger Tracing [9]

that allow tracing of requests and operations between services collecting execution data, available

to export into JSON format. It looks however, as if there is no way to conveniently visualize and

analyze this data. The aforementioned Jaeger Tracing system provides only basic functionalities

in this regardt.

As mentioned before, benchmarks and performance insights are incredibly useful for numerous

reasons. In this thesis we have closely collaborated with Intel Corporation and their representative,

Mr. Przemysław Tyrkiel - Cloud Software Architect, who introduced us to the challenges that he

and his team face when working on Intel products for cloud and distributed systems. We learned,

that DeathStarBench is great to get the general idea of system performance, and Jaeger can be used

for visualization purposes, but there are missing pieces in this software. Some features, especially

when it comes to visual presentation or statistical analysis could provide useful insights.

1.1 The purpose and scope of the thesis

The main objective of this thesis is development of software capable of visualizing and analyzing

whole chains of microservices calls. In addition, it should provide features like calculating commu-

nication times between services and performance statistics for each operation within services. This

will allow a better insight into modern, distributed, microservices applications, making it easier to

find bottlenecks, errors and fine-tune software. Statistics of various operations will also be useful

to understand general performance of the infrastructure and application components. As an input,

the application will use telemetric data in JSON format collected by Jaeger Tracing tool to fully

leverage it’s untapped potential.

1.2 Tasks distribution

The following tasks were realized by each group member:

• Mateusz Dębski was responsible for trace grouping, designing interfaces, visualiz-
ing callGraph, implementing table, headers, managing smaller components such

as GroupSelector and FileUploader also dealing with ’Negative start times traces’.

• Michał Dropiewski was responsible for implementing the transfer time algorithm
and visualizing it in the form of a directed graph within a web application.

• Mikołaj Felczyński was responsible for constructing components such as scatter
plots and histograms, compiling statistics, testing the system’s functionality, ad-

dressing bugs, and enhancing the software.

• Kacper Wiśniewski was responsible for implementing initial architecture and con-
tainerization, contributed to developing the logic for communication time calcu-

lation, worked on developing test data generator and performed manual tests to

validate the functional correctness of software

Przemysław Tyrkiel from Intel Corporation provided us with substantive support, and played

the role of a client.

1.3. Chapters contents 3

1.3 Chapters contents

Further organization of the thesis is as follows:

• Chapter 2 serves as a theoretical introduction to the concepts used in this thesis. It lays
foundation for understanding of further chapters.

• Chapter 3 aims to elaborate on input data format used by the application, what data does
it contain and how it is processed.

• Chapter 4 describes our step-by-step approach in designing the solution with consideration
of functional and non-functional requirements, proposed architecture, interface design.

• Chapter 5 dives deep into the details of the system implementation. It covers effects of our
work and technologies used to achieve the goal.

• Chapter 6 is a concluding chapter - a summary of our final product, achieved goals and
possible improvements.

Chapter 2

Performance evaluation for modern IT

infrastructure

This chapter serves as introduction into the theory of performance testing of microservice cloud

systems. It aims to establish a theoretical foundation that underpins our research by explaining

concepts used in this thesis.

2.1 Features of modern infrastructure and architecture solutions

In order for IT infrastructure and software architecture to keep up with the challenges of the digital

world, the following quality features must be considered:

• Availability - many applications are used in various regions. They have to be highly
available in every part of the world.

• Scalability - both software and hardware infrastructure have to be scalable. By scalability
it is meant that an IT solution can adjust itself to constantly changing service demand.

Thus, it is not required to keep extensive infrastructure running when the demand is low.

And vice versa, when the demand rises, larger (i.e. more powerful) infrastructure will work

more effectively. There is no point in having a great product if a company can’t scale it to

meet the demand.

• Fault tolerance - companies relying on income from digital products will effectively loose
money in case of downtime. Obviously it’s almost impossible to keep the application running

at all times. The main objective is to minimize downtime as much as possible. For example,

in case of the hardware failure, another machine should take over the workload. If it’s an

error in the application itself, it’s desirable to instantly detect such an error and correct it.

• Performance - some applications are handling hundreds of thousands of users every second
all around the globe. This requires extensive hardware resources, which capacity meets the

speed and resource requirements for the incoming traffic.

To answer these demands, multiple approaches were proposed. We will however focus on the,

ones that are the most adopted and heavily used in the industry. It’s worth noting, that these

approaches do not exclude each other. In fact, more often than not, they co-exist, allowing for

obtaining even better results. Thus, in the following we introduce IT solutions widely used to

address the aforementioned demands

4

2.2. Benchmarking 5

2.1.1 Microservices

Microservices architecture is an approach where software is developed as a collection of small

units called microservices, that communicate with each other. Each microservice is responsible for

one service or a small set of homogeneous services. This allows for modular construction of the

software while each module, i.e. microservice, allows to seperate concerns. This way applications

becomes more fault tolerant - a failure in one component won’t necessarily mean a failure of the

whole application. One failed component can be restarted withing seconds, because it’s a small

piece of code with low resource demands. In addition, this paradigm enables great scalability - to

the point where single services can be scaled up (i.e. spawned) or down (i.e. stopped) depending on

the demand, as opposed to monolithic architecture where the whole application has to be scaled.

Let us note, that microservices naturally support distribution of the computational process.

2.1.2 Distributed systems - clusters

Distributed systems consist of multiple independent nodes - usually, in this context, node, which

is a unit executing computations, is a physical or virtual machine. They work in a coordinated,

unified fashion to achieve common goal - here it’s serving applications and their components.

Properly designed and maintained distributed systems provide higher availability and better fault

tolerance. Those qualities are often further amplified by orchestration tools like Kubernetes [13],

that automate composition and deployment of microservice applications. When a partition occurs

in the system, modern orchestration tools are able to detect it and run lost workload on the active

nodes. To satisfy the varying demand for hardware resources it’s possible to add (or remove) more

nodes to the system, thus providing perfectly adjusted performance.

2.1.3 Cloud

Cloud could be described as interconnected network of data centers. It’s an enormous collection

of servers located all over the world, accessible over the internet. Cloud service providers take

care of managing the underlying infrastructure, offering their resources and services to users or

companies. This way end users can create their own infrastructure, run applications and use

managed services without worrying too much about provisioning and administration of machines

or network. Most companies adopted a hybrid approach when it comes to their infrastructure. Part

of their workload is deployed in the cloud - for example large scale applications with varying traffic

that need constant scaling. Although cloud provides more flexibility, on-premise infrastructure will

be more cost-effective for cases with lower, constant traffic. Hybrid approach is the most common,

but there is no denying that cloud plays a big role in modern IT infrastructure.

2.2 Benchmarking

Benchmark is a computer program or a set of programs that run standardized tests in order to

assess performance of a computer system. Usually, after executing such tests, these programs are

able to represent system capacity in a comparable way. For example, one of the most popular

options for testing desktop CPUs is Cinebench R23 [15]. Cinebench uses 4D image rendering

tests to stress all available cores for a period of time. The final result contains Single-Core and

Multi-Core scores represented as integer numbers. Thanks to that, it’s possible to directly com-

pare competing products on the market or determine progress over product generations. Another

example, which is aimed at online transaction processing server solutions, is the TPC [7] bench-

2.2. Benchmarking 6

mark - HammerDB [23]. It runs series of SQL queries against databases in order to test general

system performance. In the end it gathers runtime statistics like Transactions per second or New

Orders per minute. Again, we strip down the performance of a whole system to just one number,

making it possible to directly compare results between different systems. Yet another benchmark

example is SPEC CPU [6] that tests CPU performance. SPEC CPU is a collection of algorithms

for fixed point (int) and floating point computations considered typical for computing applications.

Performance is expressed in relation to some computer conventionally considered standard. Let

us note, that there are numerous further benchmarks dedicated to any aspect of computer system

- performance, availability, reliability and scalability.

The above examples provide general idea on how benchmarking tests a piece of hardware or

a computing system. Hardware companies like Intel Corporation might find it useful to simulate

such environment and determine performance benefits of their server products. To achieve that,

engineers set up on-premise clusters equipped with appropriate hardware to mimic production-

grade infrastructure. Using this configuration they are able to run specific workload, that is a

benchmark that focuses on testing interesting features of a distributed system. An example of

such benchmark is DeathStarBench.

DeathStarBench

DeathStarBench (in short DSB) [2] is an open-source tool designed for performance testing of

cloud microservices. It’s being developed by SAIL group at Cornell University. DSB provides a

feature to deploy microservice applications that leverage popular technologies. As of now, released

types of applications are:

• Social Network - application similar to popular social media platforms like Facebook or
Twitter.

• Media Service - an app for browsing and rating movies.

• Hotel reservation - as name suggests, this application mimics services with hotel reservations.

For our purposes we decided to use Social Network, as it was recommended by Intel representative.

An architecture of Social Network is shown below on the figure 2.1:

Figure 2.1: Social Network architecture [24]

After deploying the Social Network, wrk2 tool is used to generate constant throughput load

on the application. When the test is done, the overall result are presented based on latency

histogram and total throughput histogram. The lower the latency for given percentile, the better

2.3. Tracing 7

performance system offers. The project is one of the leading solutions for benchmarking modern

infrastructure in the industry. However, basing just on latency histograms it’s hard to determine if

some microservices act as bottlenecks or where the software could be fine-tuned. Fortunately, DSB

deploys Jaeger container alongside the main application, thus utilizing tracing - a practice which

will be covered in depth in the next section. For now, let’s state that Jaeger is a visualization tool

used to address aforementioned issues, at least in theory.

2.3 Tracing

Tracing refers to monitoring and recording the execution of an application to understand its be-

havior, identify performance bottlenecks, and analyze how different components interact with each

other. Tracing is particularly valuable in distributed systems where applications are composed of

multiple services that work together to fulfill a request. A tracing system that that we utilized is

Jaeger Tracing. It provides useful visualization methods and allows to export telemetry data in

JSON format. In the following we explain basic notions used in Jaeger Tracing.

2.3.1 Trace

Trace - is a complete record of the activities and interactions that occur across various components

or services in a distributed system when processing a specific request or transaction. A trace

basically refers to chain of executed operations. Traces consists of spans.

2.3.2 Span

Span - is a smaller unit of measurement within a trace. It represents a single operation or activity

within a larger transaction. Spans contain information such as the start times of an operation,

its duration, its predecessors in the calling sequence, name of service executing the action and

relevant metadata.

2.3.3 Traces and spans visualized

As mentioned, the trace is a set of spans. It contains a chain of multiple operations that occur in

time. Each span represents one singular operation. They can be spotted in a sequential or parallel

manner, depending on the request. It’s possible for a trace to be forked, i.e. have more than one

end. Our implementation aims to provide better readability when visualizing traces and spans.

Figure 2.2: Traces and spans

2.3. Tracing 8

2.3.4 Jaeger Tracing

Jaeger Tracing [10] - a CNCF (Cloud Native Computing Foundation) open-source project. Ac-

cording to its documentation: ”Distributed tracing observability platforms, such as Jaeger, are

essential for modern software applications that are architected as microservices. Jaeger maps the

flow of requests and data as they traverse a distributed system. These requests may make calls to

multiple services, which may introduce their own delays or errors. Jaeger connects the dots between

these disparate components, helping to identify performance bottlenecks, troubleshoot errors, and

improve overall application reliability.” [9] Jaeger Tracing relies on instrumentation within appli-

cation code. Developers need to code specific instructions within services to make them traceable.

When a request enters a service, the instrumentation code generates a unique identifier and span

for the trace and associates it with the request. It is then collected and processed by Jaeger Tracing

instance. Inside the Jaeger Tracing UI users can gain insight into collected data as shown below

on figures 2.3, 2.4, 2.5 and 2.6.

Figure 2.3: Main page with search - users can select or compare traces

Figure 2.4: Spans view - user can inspect spans collected within selected trace

2.3. Tracing 9

Figure 2.5: Force directed graph view

Figure 2.6: Directed acyclic graph view

2.3.5 OpenTracing

OpenTracing [5] - an open-source initiative, aimed to furnish vendor-neutral APIs and instru-

mentation tailored for distributed tracing. In the realm of distributed cloud-native applications,

understanding the performance of requests across services proves challenging for engineering teams.

This is where the role of distributed tracing becomes pivotal and OpenTracing tried to address

this issue.

2.3. Tracing 10

2.3.6 OpenTelemetry

OpenTelemetry [11] - a project which is a part of the CNCF (Cloud Native Computing Founda-

tion), standardizes the creation and collection of telemetry data (logs, metrics, traces). Born from

the merger of OpenTracing and OpenCensus, it comprises APIs, SDKs, and client libraries for

vendor-agnostic, exportable telemetry data from application code. Jaeger is a project within

the OpenTelemetry ecosystem.

float listings adjustbox array caption

Chapter 3

Tools and input analysis

In this chapter we introduce tracing data concepts, the ways of obtaining the tracing data, its

format, and the idea of transfer time that substitutes the measurement of communication times

3.1 Schema of creating data to visualization

The information flow in the distributed application is shown in Figure 3.1. This benchmark sends

a significant number of queries from multiple processes, with parameters determined by the person

executing the benchmark. The tested application processes and monitors this information through

Jaeger. Ultimately, we retrieve and analyze data from Jaeger monitor to gain insights into the

application’s performance under the specified benchmark conditions.

Figure 3.1: Graph of operations

11

3.2. Data to visualize 12

3.2 Data to visualize

3.2.1 Data from Jaeger

For the purpose of data, logs from the Jaeger API are required. These logs contain records of the

request that the application had to process. Ideally, these data should be extracted from Jaeger

during times when the application was under load, and the mentioned Death Star Benchmark can

serve as such a load. Offline, the logs are less valuable, as it will be more challenging to various

anomalies such as operation hang-ups or prolonged duration of specific operations. In the fallowing

table 3.1 we list and explain types of data items provided by Jaeger in the JSON log files. This

input data is text file with object like structure.

name of data description
example (how it looks in
log)

traceID
Unique number that iden-
tifies trace in data.

2fade568645f89b0

spanID
Unique number that iden-
tifies a single span in data.

c7c16bf210f5a963

operationName
Name of operation that
microservices execute.

compose user mentions
client

refType
Description if the span is
the child of another span.

CHILD OF

startTime
This is a time when the
span starts running in mi-
croseconds.

number representing mi-
croseconds

duration
How long span was pro-
cessing.

number representing mi-
croseconds

warnings
Warnings in execution
span.

invalid parent span
IDs=6c6b020f2ebf36fc

Table 3.1: Data from Jaeger

3.2. Data to visualize 13

3.2.2 Relations between spans and traces

Let us note that a span and a trace are connected. Each span has different attributes that are

described in the table. One attribute is the ”Operation Name” which shows the name of a process

executed in a span. It should be noted that multiple spans can have the same operation indicating

repetition or shared processes in the traces. It is also important to mention that traces can vary

in size meaning that the number of spans in a trace can be different. This variability in trace

size suggests a dynamic and varied range of logged operations and processes which could impact

the overall analysis of application behavior. In summary, figure 3.2 the hierarchical relationship

between traces and spans, the structure of the input data (JSON log files), the properties of spans,

and the possibility of variation in trace widths and the number of spans in each trace.

Figure 3.2: Visualization of the relation between objects in data.

3.2.3 Groups of traces

The Death Star Benchmark proceeds by repetitively executing a limited set of interaction patterns

on the tested microservice system. In the consequence, there is a limited set of microservice

sequences that is repetitively present in the JSON file data. Such a sequence of microservice calls

will be called a call graph.A call graph shows a calling relationship between spans representing the

activity of a preceding microservice and its successor microservice span. A call-graph is a divicted

tree. There is an additional abstract data type, that is called a group.

The group is a collection of traces that have the same call tree. For example, if one trace calls one

span with the name process 1 and this span calls another span with the name process 2, and then

3.3. Transfer times 14

in data there is the trace that calls span process 1 and then that span calls process 2, that means

the first trace and second trace are in the same group. Every group can contain a lot of traces. In

other words, a group is collection of traces representing the same pattern of microservice usage.

This is illustrated in figure 3.3.

Figure 3.3: Relations between trace and group

3.3 Transfer times

There is an introduction to the idea of transfer time, which can be deduced from the obtained

data and used to analyze the performance of microservices communication.

3.3. Transfer times 15

3.3.1 The problem of communication time

In the problem of analyzing microservices work it’s important to look at the time that span will

communicate to another span. Unfortunately, there are no times of communication in the logs from

Jaeger.In order to calculate communication time from parent to child it is necessary to know when

child microservice is called. In order to calculate communication time from child to parent, child

return time that is needed. Neither of the two times is recorded in DSB, Therefore, we propose to

calculate a transfer time, which is a time of transferring control between actions (spans) that are

not executed concurrently. Most of the spans are concurrent, which means that one span is the

parent of the next span and the parent span waits for descendants to finish their work, between

that spans there is no time gap, which means it is impossible to calculate transfer time. One way

to calculate transfer time is when spans are not processing concurrent if one span calls more than

one operation. In this situation two separate call tree operations come from the same root this

situation allows us it’s possible to calculate transfer time. In that method, transfer time doesn’t

mean the time that the message comes from the span to the second span.

3.3.2 What is the communication time?

Transfer time figure 3.4 is the difference in time between the end of the preceding span and the

start of the processing operation of the next span. It should be noted that in transfer time, there

is no directed communication between spans, in the sense that spans do not create a connection

to transmit information to each other. As mentioned earlier, spans cannot be concurrent for the

transfer time to be computable.

3.3.3 How to calculate transfer time?

Let us note that in the current context, transfer time calculations can be done both to the spans

of a particular trace, as well as for the groups of traces. In the latter case the transfer time

refers to pairs of operations. An algorithm is employed to calculate all transfer times within a

group of non-concurrent spans. At the beginning of the algorithm, calculations are performed for

the differences between the end times of the spans execution and the start times of other spans,

regardless of whether they are concurrent or not. Subsequently, the algorithm filters out times

that turn out to be negative, thereby partially eliminating cases where predecessors are spans that

execute later. However, this alone is not sufficient to ensure that the times are genuine transfer

times. It’s possible that a concurrent span got delayed and started executing later than it should

have, and in the algorithm, it would be treated as a sequential process. The next step involves

filtering out such cases by checking whether the successor is not a descendant of the preceding

span. As a result, only spans that genuinely represent transfer times are retained. The algorithm

calculating transfer time can be summarized in the following pseudocode:

3.3. Transfer times 16

1 . S e l e c t t r a c e o f g iven group

2 . For each t r a c e :

2 . 1 f o r each pa i r (span1 , span2)

2 . 1 . 1 c a l c u l a t e time from the end o f span1 to the begin o f span2 .

2 . 1 . 2 i f the time i s l e s s then zero cont inue next i t e r a t i o n ,

e l s e add to po t e n t i a l t r a n s f e r .

3 . f o r each pa i r (po tent i a l span1 , po t en t i a l s pan2)

3 .1 i f percendance was in l e s s then 20\% of a l l t r a c e s
i gno re t h i s pa i r .

3 . 2 i f po t en t i a l s pan1 i s parent o f po t en t i a l s pan2

then ignore t h i s pair , e l s e add pa i r to t r a n s f e r time .

Figure 3.4: Visualization of transfer time

Chapter 4

Project

In this chapter, we present the design of Jaeger trace processing and data visualizing application.

System requirements, architecture, GUI and testing will be outlined.

4.1 Functional and Non-functional requirements

4.1.1 Functional requirements

The initial step to begin the project involves performing tests on Intel infrastructure using the

Death Star Benchmark. These tests will evaluate the system’s performance under heavy loads and

generate runtime logs also known as ”traces.” The data collected from these logs will be essential

for analyzing and improving our application’s performance.

Developing a Module to Visualize Microservices Invocation Chains As part of further analysis,

we plan to develop a module to visualize invocation chains of microservices based on the collected

logs (traces). This module will serve several key functions:

• The module will present a directed graph depicting relationships between microservices,
particularly identifying the most common invocation chains.

• It will display distributions of execution times in individual microservices, enabling a quick
understanding of the efficiency of specific system components.

• It will provide statistics on communication times between microservices, helping to identify
potential delays in data transmission.

• The final visualization will be accessible in a web browser, providing easy access and inter-
activity for users.

• In cases where the network of communication between services does not form a chain, the
module will identify critical paths, allowing the identification of potential performance issues.

The planned visualization module is a critical element of our application’s performance analy-

sis, enabling a quick understanding of interactions between microservices and identifying areas

requiring optimization.

4.1.2 Non-functional requirements

The fallowing non-functional requirements for the system were defined:

17

4.2. System architecture 18

• Python will be the primary programming language utilized for trace analysis and statistical
processing tasks in the project. Its versatility and extensive libraries make it well-suited for

these purposes.

• For web-based visualizations, any JavaScript library can be used with a preference for a
well-established one that ensures compatibility and flexibility in various web environments.

• The software’s design is intentionally general-purpose to avoid being exclusively tied to the
Death Star Benchmark (DSB). It aims to be adaptable to a wide range of scenarios involving

trace analysis and statistical processing.

• The project promotes the use of stable and high-quality open-source software to encourage
transparency and collaboration in the development process.

• The thesis will be written in English to ensure clarity and accessibility for a global audience.

• Lastly, the intention is to release the developed software as open source aligning with the
principles of collaborative development and allowing for broader community access contri-

bution and benefit from the project.

• The system works offline, processing a set of logs and visualizing data without the need for
internet connectivity.

4.2 System architecture

4.2.1 Context diagram

In the context diagram, ee figure 4.1 there are four entities interacting with the system. The

first entity is the user, engineers who wants to test their application infrastructure. These users

are a crucial element in the context diagram as they directly influence what is processed in our

application. The next element in the project’s context is the Death Star Benchmark, as mentioned

earlier, it is responsible for stress-testing the application. Through it, one can observe certain

inconsistencies in the tested application (something working slower, experiencing freezes). Jaeger

monitors and collects information on how the system behaves under the load and records it as

JSON file, subsequently processed within the application.

Another element in the context is the cloud infrastructure. What is cloud infrastructure? Cloud

infrastructure, in the context of computing services, allows access to computer resources such as

servers, storage, networks, and software over the internet. In contrast to traditional infrastructure

models where resources are locally installed and managed, cloud infrastructure offers flexibility

and scalability by providing these resources on demand. The tested application operates within

the cloud infrastructure, and its performance is heavily dependent on it.

4.2. System architecture 19

Figure 4.1: Diagram Context

4.2.2 Use cases

A diagram illustrating use cases for the system is presented in Figure 4.2. The main use cases are

outlined as follows:

• Import data
The user begins by interacting with the system, uploading the JSON file containing the data.

Subsequently, the system validates the uploaded file and calculates the statistical values.

Once the processing is complete, the user can analyze the data by exploring five types of

visualizations: a table with statistical values, a call graph, a scatter plot, a histogram, or a

precedence graph.

• View table
The table with statistical values can be seen for operations within the groups and for traces.

• View call graph
The call graph can be viewed for traces and for groups of traces.

• View scatter plot
The scatter plot can be opened for groups of traces, for operations within the groups, and

for spans within the operations.

• View histogram
The histogram can be seen for groups of traces, for operations within the groups, for spans

within the operations, for spans within the groups, and for spans within the file.

• View precedence graph
The precedence graph can be viewed for groups of traces, and it will show a graph of transfer

times if such times could be calculated for the group.

4.2. System architecture 20

For spans within the file

For spans within the operations

Analyze precedence graph

extension points
For groups of traces

View precedence graph

View histogram

View scatter plot

View table with statistical values

View call graph

Analyze histograms

extension points
For groups of traces

For operations within the groups
For spans within the operations

For spans within the groups
For spans within the file

Analyze table with statistical values

extension points
For operations within the groups

For traces

For traces

Analyze scatter plots

extension points
For groups of traces

For operations within the groups
For spans within the operations

Enginner

For operations within the groups

For spans within the groups

Analyze call graphs

extension points
For traces

For groups of traces

For groups of traces

Analyze diagrams

extension points
Analyze call graphs

Analyze scatter plots
Analyze histograms

Analyze precedence graph

JSON validation
Upload JSON

extension points
JSON validationImport data

extension points
Upload JSON

Analyze data

extension points
Analyze diagrams

Analyze table with statistical values

System

«extends»

«extends»

«extends»

«extends»

«extends»«includes»

«includes»

«includes»

«includes»

«includes»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«extends»

«includes»

«extends»

Figure 4.2: Use case diagram

4.3. System architecture 21

4.3 System architecture

System architecture is shown in Figure 4.3. The system contains three main components react,

flask, and docker platform. In the frontend layer, React was employed for:

• graph visualization in the user interface

• calculations, and enabling users to upload files.

In the backend, Python with the Flask framework was mainly used for:

• processing log files,

• handling endpoints,

• performing a significant portion of computations.

Docker platform used for:

• Environment isolation is offered which resolves problems that arise from variations in oper-
ating system configurations.

• Facilitates the movement of applications across different environments, accelerating develop-
ment and deployment.

• Docker containers can be launched very quickly, speeding up the application deployment
process.

Figure 4.3: System Architecture

4.4 Interface mockup

Am interface mockup is presenting a schematic organization of the application graphical user

interface. It defines defines interface blocks allowing to access system functionalities defined as

use-cases. The interface mockup is crucial as it needs to be tailored to the technology being

utilized. Therefore, our mockup is customized with fixed elements, such as the tab selection, and

underneath is the space where charts will be displayed. This is enabled by the React framework,

allowing us to adjust components on an already functioning page without completely changing

4.5. Testing 22

it—just by launching a new component. This approach is more optimal as certain elements on the

page remain unchanged. The mockup has been designed in accordance with the requirements of

both the supervisor and the client to be as intuitive in navigation as possible. The goal is to make

it a tool that is easy to learn.

Figure 4.4: Interface Mockup

The diagram illustrates three zones. The first one, ’Variables,’ shows the variables selected by

the user in the application, such as the chosen group or trace, for example. The next zone in the

interface is ’Navigation,’ where users can select the visualization the system should display. The

’Content’ zone displays all components, including visualizations of graphs, histograms, and tables.

4.5 Testing

When developing software it’s necessary to test it. In the case of this project, the aspect of testing

wasn’t so obvious - its main feature is visualization and statistical calculation based on an input

file generated by real distributed system. To create such a file, one approach could be to generate

traces using the DSB benchmark, but it’s execution and output values are something we can’t

control, so it can be considered completely random. Therefore, we need to generate files with set

values like duration times, communication times, etc. As a result, we will develop a Python script

to generate artificial traces. The script will work in a parameterized way - the user can specify

the number of traces, maximum number of spans per trace, specify duration or transfer time to

a fixed value (random otherwise) and input the number of microservices. These generated JSON

files will be used to validate calculations and visualizations generated by our software. Because of

4.5. Testing 23

the specifics of our project, it doesn’t have the regular unit tests - it will be necessary to validate

the software ”by hand”.

Below is a list containing features planned to test:

• Call graphs - we will generate traces with specified number of spans. We will check, if the
number of spans in the graph is aligned with the set value. For smaller, linear instances

we will also validate the order of spans on said graph. It’s also necessary to check if given

operations are assigned to their services correctly.

• Scatter plots - our goal is to generate traces, where part of the spans will have set duration
time, while randomly selected few will have lower or higher values by specified percentage.

This way we will validate if values on scatter plots align with expectations.

• Tables with statistical data - using the script we will generate spans with set duration times.
We should see the same averages, means and percentiles.

• Transfer times - the test will consist of checking if calculated values align with the transfer
times set in the script. For instance, if the result of the script will contain services for which

transfer time was set to 200ms, we should see the same number in the application.

Aside from these, we aim to evaluate performance of the application by measuring average response

time when rendering visualisations in response to file upload.

Chapter 5

Implementation and tests

In this chapter, we present details of system implementation, testing, and discovered data artifacts,

as well as the way to use the project.

5.1 Used technologies

5.1.1 Docker

Docker [14] is an open-source platform designed to deploy, scale, and manage applications through

containerization. This approach involves packaging an application along with its dependencies (i.e.,

required software) into a standardized image, simplifying software deployment. Docker generates

containers, which are self-contained environments that encompass everything necessary to execute a

program, ranging from operating system packages to source code. These containers are lightweight,

ensuring portability, and include all essentials for running the application, eliminating dependence

on host platform installations. The ability to share containers facilitates collaborative work, ensur-

ing consistency in functionality across users. Our project adopts Docker to simplify environment

installation on diverse hardware. We opted for this technology due to its well-documented nature

and the professional experience team members possess with it. Our project utilizes two containers:

one for React handling the frontend, and another for Flask managing the backend.

5.1.2 GitHub

GitHub [12] is an online source-code hosting service designed for version control and collaborative

software development. It facilitates seamless collaboration among developers, enabling them to

work on projects from any location. Utilizing Git, a distributed version control system, GitHub

tracks changes in source code throughout the software development process. We selected GitHub

to guarantee that all team members can access various code versions and contribute changes visible

to others. This technology also enables us to revert to previous working code versions in case of

emerging software issues. Additionally, we plan to publish our project as an open-source repository

on GitHub.

5.1.3 Python

Python [21] is a high-level, interpreted programming language renowned for its simplicity, read-

ability, and sound design principles. Supporting various programming paradigms, including pro-

cedural, object-oriented, and functional programming, Python stands out as an ideal language for

beginners. In our system, Python serves as the backend programming language, enabling us to

24

5.1. Used technologies 25

write code that manages the environment, processes data, and communicates with the frontend

seamlessly. Moreover, Python provides a wide range of libraries and tools for data processing.

Thanks to it, the development of data processing components in our system was simplified.

5.1.4 Flask

Flask [20] is a lightweight web application programming framework written in Python. We chose

Flask for our project, recognizing its features as well-aligned with our needs, and employed it as a

tool to construct the backend environment. Furthermore, using Flask allowed seamless connection

of the web interface with data processing components also written in Python.

5.1.5 JavaScript

JavaScript [8] is a versatile, cross-platform, object-oriented scripting language primarily employed

to enhance the interactivity of web pages. It facilitates the creation of sophisticated animations,

interactive buttons, pop-up menus, and various other web elements. Thus, JavaScript was pri-

marily executed in a browser environment. Additionally, JavaScript functionality can be extended

to work on the server side, as exemplified by technologies like Node.js. Given our team’s lack of

prior experience in frontend development, we opted for JavaScript due to its extensive learning

resources and widespread use in the field. What is more, JavaScript is a de facto standard for

client-side (i.e., in-browser) applications.

5.1.6 React.js

React.js [16] is a JavaScript library developed by Facebook and opened to the public to sim-

plify the creation of interactive user interfaces. Developers can build applications by assembling

reusable components responsible for generating concise, reusable fragments of HTML code. We

employed React.js as the primary technology for constructing the graphical user interface in our

system. The choice was driven by the extensive community support and the abundance of helpful

packages that significantly expedited the application development process. The ability to build

independent reusable components provided our team members with the opportunity to develop

these components separately before integrating them into the complete application.

5.1.7 React-Vis

React-Vis [22] is a data visualization library built on React by Uber Technologies. Offering support

for various plots, charts, and other visual representations of data, React-Vis facilitates the seamless

integration of data visualization into React applications. In our system, we leverage this library

to generate scatter plots. The decision to use React-Vis was influenced by our observation of its

well-crafted scatter plots in other contexts and by the stability of this library.

5.1.8 D3.js

D3.js [18] is an abbreviation for Data-Driven Documents. It is a JavaScript package employed to

craft data visualizations within web browsers. It makes use of standard web technologies such as

HTML, SVG, and CSS. In our project, we used the D3.js package to generate histograms. The

inherent flexibility of its low-level nature allowed us to finely tailor the histograms to fulfill the

intricate demands of data visualization, like determining a custom number of bins and using a

logarithmic scale.

5.2. Installation 26

5.2 Installation

Prerequisites

Follow the steps in these instructions (https://docs.docker.com/desktop/install/windows-install/)

to install Docker and Docker Compose.

Get project files

If you already have the zip file containing the project files, unzip it, and you can skip to the ’Run

the app’ subsection in 5.2.

Download repository

In the chosen directory, use the command below to clone the git repository.

git clone https://github.com/Kxpi/performance-assessment-and-modelling-of-

microservices-based-cloud-systems.git

Update repository

Use the command below to update the git repository.

git pull

Switch the branch to init webapp

In the repository’s directory, use the command below to change to the ’init webapp’ branch.

git checkout init_webapp

Run the app

Start the Docker Engine by running the Docker Desktop application. If you’ve made changes or are

running the app for the first time, you’ll need to rebuild the images. Use the following command

in the project directory to do it:

docker compose build --no-cache

Run the following command in the project directory to start up:

docker compose up

Open

Open this link in your web browser.

http://localhost:3000/

Exit the program

To stop the program, send the SIGINT (Signal Interrupt) command, which is [ctrl+c], to the

process running ’docker compose up’.

https://docs.docker.com/desktop/install/windows-install/
http://localhost:3000/

5.3. Usage and logic 27

5.3 Usage and logic

5.3.1 Header

Figure 5.1: Header

The Header component(see Fig. 5.1) functions as the central command hub, it is divided into two

sections: Navigation Section and Variable Section.

Navigation Section enables users to switch between various views. Each tab within this section

represents a unique view, such as ”Input” or “Scatter Plot”.

The variable section manages the state of data item variables enabling switching between views

without having to set the data item variable again. This is crucial as the content of views depends

on the set data item variable values. Additionally each tile in variable section is equipped with an

’x’ button for resetting its value.

Figure 5.2: Data item variables hierarchy

It is important to note that when when modifying or clearing data item variables, that they

are organized in a hierarchical structure(cf. Fig.5.2). The meaning of a group, trace, span was

explained in sections 2.3 and 3.2. Clearing or modifying one variable will also affect the variables

below it in the hierarchy, because data items are not only identified by their own values, but also

exist in the data sets higher in the hierarchy. For instance, if a group and a trace are selected, and

then it is decided to change the group, then the trace will no longer be associated with the selected

group value. This hierarchical structure ensures consistency in managing data item relationships.

5.3. Usage and logic 28

5.3.2 Input

Figure 5.3: Input Tab

The Input tab(Fig.5.3) in the application acts as the main interface where users can upload files

and choose a group. This page is crucial as it sets the data items visualization in all other parts of

the application. Hence views in the application rely on the Input page. It is necessary to upload a

JSON file and in some cases select a group. The functionality of the callGraph view, for example,

relies on the selected group.

Figure 5.4: Group Selector

Group Selector(Fig.5.4) is a feature that enables users to choose a particular group in the input

file. By clicking on the component, a drop-down menu will appear, displaying all the available

groups. Each group in the drop-down is presented with a group ID, a trace number, and colorful

badges indicating the service names. There may also be a special group displayed which includes

all traces with negative start times(see 5.3.1).

5.3. Usage and logic 29

Figure 5.5: The legend of the scatter plot of groups

Figure 5.6: Scatter plot of groups

5.3.3 Scatter plots

In the scatter plots tab, the start times and durations of groups, operations, and spans are dis-

played. The y-axis represents duration, while the x-axis indicates the start time. The plots use

milliseconds as the unit of measurement. Users can zoom in on the plot by holding down the Shift

key and the left mouse button while selecting the desired area. To return to the default view, users

can hold down the Shift key and click the left or right mouse button.

Scatter plot of groups

This component, shown in Fig. 5.6, displays data items representing groups in the JSON file as

boxes. Each group is visually distinguished by a unique color and corresponding number in the box,

as indicated in the legend presented in Fig. 5.5. The points in group boxes (shown as numbers)

depict the median durations and median start times of spans within each group. Additionally,

each group includes two rectangles with frames matching their respective colors. The smaller

rectangle, filled with light brown, represents values from the first quartile to the third quartile

of both duration and start time within the group. The larger rectangle, filled with light green,

signifies values from the zeroth quartile to the fourth quartile of both duration and start time

within the group. Users can select a group by clicking on the object with the group number,

leading them to the scatter plot of group operations view. The chosen data item variable is shown

in the page header variable section (see section 5.3.1, Fig. 5.1).

Scatter plot of group operations

The scatter plot of operations repeats the visualization scheme of groups in files. This component,

presented in Fig. 5.8, shows the operations within the group. Each operation is distinguished by a

unique color and the accompanying number (in the box) indicating the group number, as illustrated

in the legend shown in Fig. 5.7. The numbers in a box bearing the group number and operation’s

color represent the median durations and median start times of spans within the operation in the

5.3. Usage and logic 30

Figure 5.7: The legend of the scatter plot of group operations

Figure 5.8: Scatter plot of group operations

group. Each operation is shown as two rectangles with frames matching the operation’s color. The

smaller rectangle, filled with a light brown color, signifies values from the first quartile to the third

quartile of both duration and start time of spans within the operation in the group. The larger

rectangle, filled with light green, denotes values from the zeroth quartile to the fourth quartile of

both duration and start time of the spans within the operation in the group. Users can choose an

operation by clicking on the object with the group number and operation’s color, prompting the

appearance of the scatter plot of operation spans below. The chosen data item in the hierarchy is

indicated in the variable section at the top of the page (see section 5.3.1, Fig. 5.1).

Scatter plot of operation spans

This component, shown in Fig. 5.10, displays the objects representing spans within the group

operation. Due to the large number of spans and potential browser performance issues, users have

the option to choose the percentage of spans to display, as illustrated in Fig. 5.9. The objects

indicate the values of both duration and start time for the spans. Users can choose a span by

clicking on the corresponding number, after which the details of the selected span will be displayed

below the scatter plot. Example results are shown in Fig. 5.11.

5.3.4 Histograms

The Histograms tab serves the purpose of displaying histograms of frequencies of duration and

start time in groups, operations, and particular spans. For determining the number of bins in

histograms with a logarithmic scale, we applied the following formula:

Number of bins = ⌈log2(Number of spans analyzed in the histogram) + 1⌉

5.3. Usage and logic 31

Figure 5.9: The selection of the percentage of spans to display

Duration histogram of groups

This component is shown in Figure 5.12. In the group histogram, the y-axis represents the 99th

percentile of the duration for spans within each group. Group IDs are depicted on the x-axis.

Bars, corresponding to the groups, are arranged in descending order based on their values on the

y-axis. Users can choose a group by clicking on its respective bar. The selected group is indicated

in the header variable part of the page (see section 5.3.1, Fig. 5.1).

Start time histogram of groups

This component is presented in Figure 5.13. In the group start time histogram, the y-axis displays

the 99th percentile of start time values for spans within each group. Group IDs are represented on

the x-axis. The bars, signifying the groups, are arranged in descending order based on their values

on the y-axis. Users can choose a group by clicking on its respective bar. The selected group is

indicated in the header variable part of the page (see section 5.3.1, Fig. 5.1).

Duration histogram of spans

This component is shown in Figure 5.14. In the spans duration histogram, the y-axis illustrates

the counts of spans in the analyzed file within specified bins on a logarithmic scale with a base of

10. The x-axis denotes the values of duration.

Start time histogram of spans

This component can be seen in Figure 5.15. In the spans start time histogram, the y-axis illustrates

the counts of spans in the analyzed file within specified bins on a logarithmic scale with a base of

10. The x-axis denotes the values of the start time.

Duration histogram of group operations

The group histograms section is accessible from file histograms by choosing a group. The visu-

alization scheme for operations in a group repeats the visualization scheme of groups in a JSON

file described earlier. This component is presented in Figure 5.16. The y-axis displays the 99th

percentiles of the duration for spans within the group operations. Operation names are depicted

on the x-axis. Bars, representing the group operations, are arranged in descending order based on

5.3. Usage and logic 32

Figure 5.10: Scatter plot of operation spans

5.3. Usage and logic 33

Figure 5.11: Details of the selected span

Figure 5.12: Duration histogram of groups

Figure 5.13: Start time histogram of groups

5.3. Usage and logic 34

Figure 5.14: Duration histogram of spans

Figure 5.15: Start time histogram of spans

5.3. Usage and logic 35

Figure 5.16: Duration histogram of group operations

Figure 5.17: Start time histogram of group operations

their values on the y-axis. Users can choose an operation by clicking on its respective bar. The

selected operation is indicated in the header variable part of the page (see section 5.3.1, Fig. 5.1).

Start time histogram of group operations

This component is shown in Figure 5.17. In the start time histogram of operations in a group, the

y-axis represents the 99th percentiles of the start time for spans within the group operations. Op-

eration names are displayed on the x-axis. Bars, indicative of the group operations, are organized

in descending order based on their values on the y-axis. Users can choose an operation by clicking

on its respective bar. The selected operation is indicated in the header variable part of the page

(see section 5.3.1, Fig. 5.1).

5.3. Usage and logic 36

Figure 5.18: Duration histogram of group spans

Figure 5.19: Start time histogram of group spans

Duration histogram of group spans

This component can be seen in Figure 5.18. In the duration histogram for spans of a group,

the y-axis illustrates the counts of spans within the group, categorized within specified bins on a

logarithmic scale with a base of 10. The x-axis denotes the values of the duration.

Start time histogram of group spans

This component is presented in Figure 5.19. In the start time histogram of group spans, the y-axis

depicts the counts of spans within the group, distributed within specified bins on a logarithmic

scale with a base of 10. The x-axis represents the values of the start time.

5.3. Usage and logic 37

Figure 5.20: Duration histogram of operation spans

Figure 5.21: Start time histogram of operation spans

Duration histogram of operation spans

This component is shown in Figure 5.20. For the duration histogram of operation spans, the y-axis

illustrates the counts of spans within the operation within the group, categorized within specified

bins on a logarithmic scale with a base of 10. The x-axis denotes the values of the duration.

Start time histogram of operation spans

This component can be seen in Figure 5.21. In the start time histogram of operation spans, the y-

axis depicts the counts of spans within the operation within the group, distributed within specified

bins on a logarithmic scale with a base of 10. The x-axis represents the values of the start time.

5.3. Usage and logic 38

5.3.5 Call Graph

The CallGraph visualizes the call tree of spans in the trace. Spans are represented by nodes, with

node color indicating the microservice they belong to. The legend displays the services observed in

the trace and their corresponding colors. Edges on the graph show the parent-child relationships

between spans, which are specified in the span’s references as CHILD OF reference in the json file.

On the call graph, the parent is the source of the edge, and the child is the target. There are two

types of callGraphs:

one for individual trace - TraceCallGraph and one for groups - GroupCallGraph.

TraceCallGraph

To view the TraceCallGraph, first select a group and then choose one of the traces within that

group. Click on a node to select a span and access more details.

Figure 5.22: Trace selection from the CallGraph page

Figure 5.23: Spans on TraceCallGraph

5.3. Usage and logic 39

Figure 5.24: Span selection from the TraceCallGraph

GroupCallGraph

This type of callGraph represents the entire group of traces that share the same call tree, resulting

in the same appearance for all traces. Single node represents aggregated spans from the entire

group with the same operationName. For simplicity we refer to it as an operation. By clicking

on a node, you can select operation and view its statistics.

Figure 5.25: Operations on GroupCallGraph

5.3. Usage and logic 40

Figure 5.26: Operation selection and statistics (1/2)

Figure 5.27: Operation selection and statistics (2/2)

The ”Show Transfer Edges” button can be found in the left corner. Clicking this button will

display additional dashed line edges that represent transfer in relation to the call tree. If there are

no transfer edges, the button will be replaced with the text

”No transfer edges.”

5.3. Usage and logic 41

Figure 5.28: Show transfer edges

Implementation

Both call graphs are react components which were created utilizing the reactflow [26] library for

nodes and edges as well as the dagre [1] library for layout. The transfer edges from GroupGraph

were built using the’react-flow-smart-edge’ [19] package.

5.3.6 Table

The Group Table(Fig 5.29) offers a user-friendly way to view operation statistics. It consists of

two distinct tables: one for duration times and another for start times. Operations are listed in

rows and statistical data is organized in columns. By clicking on a row you can highlight and

select a specific operation.

Figure 5.30: Table for selectedTrace

The Trace Table(Fig.5.30) is an alternative method for viewing traces in a basic table format.

Similar to the call graph case, the trace table requires a selected trace. Spans are displayed in

rows, and their attributes are arranged in columns. By selecting a row, you can highlight and

choose a specific span.

5.3. Usage and logic 42

Figure 5.29: Table for selectedGroup shows statistics for operations

5.4. Discovered artifacts 43

5.4 Discovered artifacts

5.4.1 Negative transfer times

While analyzing the statistics of start times in different groups, we noticed that in certain groups,

the minimum start time values are less than 0. This is concerning because of the method we use

to calculate the new start time for each span within the trace. We calculate the new start times

by subtracting the root’s original start time from the span’s original start time. In this scenario,

resulting the new start time for the root should be 0, and there should not be any negative start

times for its successors.

Yet, certain spans within the trace exhibited start time values lower than the root of the trace. To

address this, we developed a code to pinpoint and confirm instances where such situations arise.

Example results are shown in listing 5.1.

Listing 5.1: The output of our code

1 {

2 "trace_id": "00232 f628e62893e",

3 "trace_root_span_id": "00232 f628e62893e",

4 "trace_root_span_operation_name": "/wrk2 -api/home -timeline/read",

5 "trace_root_span_start_time": 1667496189420000,

6 "original_span_id": "e933d74bc56c47ba",

7 "original_span_start_time": 1667496189418350,

8 "original_span_operation_name": "read_home_timeline_redis_find_client"

9 }

Our suspicions were validated. Upon analyzing the code output, it was confirmed that the start

time value of the span with ID e933d74bc56c47ba(i.e. a called span) was indeed lower than its root

span. Furthermore, this was not an isolated incident, as we discovered that approximately 0.2% of

traces in a typical JSON file contain at least one span with a negative start time value. The exact

cause of this issue is unclear, but it is likely due to minor inconsistencies in clock synchronization

among the microservices.

Despite this issue, these traces are included in statistical calculations and still contain valuable

information, as most of the spans in these traces do not have this problem. A special group was

created for the traces with negative start times. By selecting the specific group called ”Negative

start times” the user can browse these traces and check on the call graph which spans are affected

and which microservices are involved. This group is only for browsing and contains traces from

various groups.

5.4.2 Invalid parent span

During the process of grouping we may encounter spans whose parent does not exist in the entire

trace. This can be easily identified by the presence of the warning message:

”invalid parent span IDs=’missingParentID’; skipping clock skew adjustment”.(Example in Listing

5.2)

5.4. Discovered artifacts 44

Listing 5.2: Invalid parent span example

1 {

2 "traceID": "005 fe0fbf9bd0f74",

3 "spanID": "d0da934930a94c4f",

4 "flags": 1,

5 "operationName": "read_home_timeline_server",

6 "references":

7 [

8 {

9 "refType": "CHILD_OF",

10 "traceID": "005 fe0fbf9bd0f74",

11 "spanID": "8c6e23338187e5dc"

12 }

13],

14 ...

15 "warnings":

16 [

17 "invalid parent span IDs=8 c6e23338187e5dc; skipping clock skew

adjustment"

18]

19 }

There are two scenarios:

1. The span is the root of the trace. The main method to find the root is by finding a span

without a parent reference. If there are no spans without a parent reference but one of the spans

has the ”invalid parentID” warning then that span becomes the root as its parent does not exist

in the trace. However this suspected span must also have at least one child.

2. It happens when the span don’t have any child then the span is the root of another call

tree within the trace. This call tree typically consists of a single span. On callGraph, this call tree

is displayed below the main call tree.(Fig.5.31)

Figure 5.31: Invalid parent: multiple call trees

We investigated the root cause of this issue. It is possible that the span data is incorrect due

to a misconfiguration of the OpenTelemetry SDKs. This could be caused by using different ID

5.5. Transfer time 45

lengths. If the trace IDs are not the same, Jaeger will not identify the span as belonging to

the same trace.[3] Another reason for this warning could be a discrepancy in the order of span

reporting. It can happen when the child span is sent to the collector before the parent span,

causing inconsistencies that trigger the warning message.[4]

5.5 Transfer time

In this section, we describe an implementation of transfer time algorithm and obtained results.

5.5.1 Calculation of transfer times

To check if spans are not concurrent, two methods are employed. The first method involves count-

ing how many times one span preceded another in all traces within the group while simultaneously

tallying the total number of spans in the group. If, in each trace within the group, spans are found

to precede each other, it indicates that they can be considered for transfer time. However, in

practice, this method does not account for cases where even if spans preceded each other and were

not concurrent, the execution times of spans could overlap, causing the trace not to be counted.

It treats the pair of spans as unsuitable for transfer time statistics, even if they are suitable.

The second method addresses this issue. For each pair of spans where the precedence exceeds

20% (this parameter is chosen for optimization purposes, aiming to filter out cases where precedence

occurs in a very small number of traces, which would not be of interest to the potential user for

transfer time statistics), by filtering out the least significant cases, we can now check potential

pairs of spans to ensure they are not executed concurrently. The algorithm then proceeds to check

in the call graph whether one span is the ancestor of another. This is done recursively, as the

call graph is a nested dictionary. Filtering unnecessary pairs of spans is crucial to save processing

time. A unit used in the project to represent transfer time in microseconds.

It may be intriguing why there are two conditions for spans to be included in the predecessor.

The first condition is optimization-related, aiming to reduce the number of spans for processing

to check if the successor span in the table is indeed a predecessor. The primary reason for this

approach is that there are spans where the transfer time is mostly negative. We exclude negative

time from the graph, which may be counterintuitive in interpretation. The values are typically

negative (Fig. 5.32), but after filtering out the negative values, occasional positive values still

remain (Fig. 5.33). Here, positive time is observed in eight cases, but for the vast majority, it is

negative. Therefore, a two-stage filtration is needed.

Figure 5.32: Example of minus transfer time

Figure 5.33: Example of plus transfer time

5.5. Transfer time 46

5.5.2 Transfer times graph visualization

The JavaScript library D3.js [17] was used to generate the graph. D3.js (Data-Driven Documents)

is a popular JavaScript library used for creating interactive and dynamic data visualizations on

websites. This library requires data in the form of a JSON.

Listing 5.3: Input of d3 code

1 {

2 "nodes": [{

3 "id": operation name ,

4 "x": coordinate x of node ,

5 "y": coordinate y of node

6 }],

7 "links": [{

8 "Statistic": list of statistics of these connections ,

9 "Index": index of connection ,

10 "source": source node of connection ,

11 "target": target node connection

12 }]

13 }

Figure 5.34: Transfer time graph in application

The transfer time graph see Fig 5.33 is designed with interactivity, allowing users to move each

vertex according to their preferences. Upon hovering over the connections between vertices, users

can see detailed statistics for the respective connection, derived from the comprehensive analysis

of all traces within the group. The provided statistics include the average time between these op-

erations during precedence, followed by the median, 75th percentile, and 95th percentile. Notably,

the colors assigned to the graph align with the colors of operations in the call graph, enhancing the

intuitive interpretation of the visual representation. The connection’s lengths are proportionate

5.6. Testing 47

to the times of precedence between these spans. Consequently, a greater transfer time results in a

more considerable distance between the associated spans on the graph.

5.6 Testing

5.6.1 Functional correctness

To test the correctness of our application, we developed a Python script to generate artificial

tracing data in JSON format. Listing 5.3 showcases the usage of this script.

Listing 5.4: Test generator usage instruction

$ python3 s c r i p t s / t e s t g e n e r a t o r . py −h

opt i ona l arguments :

−h , −−help show th i s help message and exit

−t , −−t r a c e s Number o f t r a c e s

−s , −−spans Max number o f spans per t r a c e

−c , −−comm−time Fixed time o f communication

−d , −−durat ion Fixed durat ion time

−p , −−p ro c e s s e s Number o f p r o c e s s e s − e s e n t i a l l y m i c r o s e r v i c e s

Features tested and conclusions are as follows:

• Call graphs - after generating multiple instances of artificial data with linear or forked traces
we were able to validate, that call graphs are presented correctly. The number of elements

was aligned with the number of spans per trace set in the generator. For every test, we

observed that operations are assigned to the correct services.

• Scatter plots - This part was the most challenging because we had to prepare the data and
calculate expected results. In the end we validated that scatter plots present accurate ranges

of values.

• Tables with statistical data - since the test generator allows to set duration time values to a
fixed number (using the –duration flag), we were able to test if the calculated statistic align

with values set by us in the script. It turned out, that statistics were computed properly, and

every manual change in values resulted in expected adjustment of values in our application.

• Transfer times - using the –comm-time flag we set transfer time between every span to
a fixed value. After inspecting the tab with transfer times we confirmed, that these values

were correctly presented on each connection. We also conducted tests with random values for

smaller traces and checked if transfer times were computed correctly - once again, validating

that they aligned with generated data.

Using the developed script and insight of the Intel representative we were able to properly test the

software and determine its functional correctness.

5.6.2 Performance

Evaluating the performance is important in optimizing application usability. To achieve this, a set

of test files with varying sizes, ranging from 1 MB to 100 MB was prepared. Each of these files was

5.6. Testing 48

loaded into the application, followed by a computation process on the backend in order to prepare

call graph representations and transfer time values. Another aspect

Collected statistics, including average response time, minimum time, maximum time, and me-

dian (shown in table 5.1) provide a comprehensive overview of the system’s performance based on

the size of the processed file. The average response time helps us understand the overall trend,

while the minimum and maximum times illustrate the range of variability. The obtained data was

carefully analyzed and then presented in figure 5.34, illustrating the relationship between file size

and response time.

Using the script to generate artificial data, we prepared multiple sample files with artificial traces

- all of them had maximum of 32 spans per trace. We performed tests for these instances, each

size was tested 5 times:

• 1MB - 64 traces (2048 spans)

• 10MB - 640 traces (20480 spans)

• 50MB - 3000 traces (96000 spans)

• 100MB - 6200 traces (198400 spans)

To gather response times we utilized built-in performance measuring tools in Chrome web browser

(Developer Tools tab). The test was run on a platform with:

• CPU - Ryzen 7 5800H

• RAM - 2x8GB DDR4 3200MHZ

• Storage - Samsung 980 NVMe SSD

• Browser - Google Chrome

• OS - Windows 11 Professional

The results are as follows:

File Size (MB)
Response Times (s)

Avg RS Max RS Min RS Median RS
1 2.03 2.25 1.78 2.15
10 45.43 46.31 44.90 45.72
50 711.32 738.23 690.45 703.23
100 2357.20 2480.62 2285.45 2340.69

Table 5.1: Response times analysis

Since the structure of telemetry data is far from being simple and straight-forward to analyze, our

algorithm results in relatively high complexity of O(n3) which can be seen on figure 5.34.

5.6. Testing 49

Figure 5.35: Performance depending on file size

Chapter 6

Conclusions

6.1 Projects plans

The project successfully realized plans regarding the development of advanced software for ana-

lyzing microservices-based applications. The implemented functionalities include the analysis of

the sequence of calls for individual operations in a component referred to as a call graph. An-

other achieved milestone is the algorithm for calculating transfer times, allowing the observation

of times at which individual operations unrelated by concurrency are spaced apart. Additionally,

components such as scatter plots and histograms were implemented, illustrating the distribution

of individual spans, traces, and groups over time, along with statistics on these operations, such as

execution time, start time of the operation, or span. These statistics are highly flexible, allowing

them to be viewed for different abstraction layers, such as groups, individual spans, or operations.

Initially, it planned to analyze statistics of communication times between operations and spans.

Unfortunately, the current logs from Jaeger do not contain sufficient information to calculate com-

munication times. With this aspect, DSB log is poorly instrumented. A minimum extension to

allow communication time calculation is recording times when microservice is called in the par-

ent process and the time when the called returns to the parent. For this reason, the concept of

transfer time was introduced to trace communication delays indirectly. It was also influenced to

analyze the critical path between operations. It appeared that the microservice-based applications

of DSB. to the extent of data obtained for this study, always had trees call-graph. This means

that the root generation was always calling further descendant services and waiting for them to

return. Consequently, the root operation was always the longest-running part of the Jaeger trace.

In effect, searching for the longest path had little utility, because the root span was always the

longest path of a single operation.

There is some ways to exand project.

• A universal platform for conducting tests under changing load (traffic) to the microservice,
available computing power (

• A module generating a response time model based on load parameters, available computing
power, memory, and processor type (e.g., multidimensional linear regression, any machine

learning models are permissible).

The project would handle multiple files simultaneously, and the hardware available to those working

on the project might prove inadequate, considering the large file sizes and resources they would

occupy. However, the project has the potential for further development, especially concerning the

simultaneous processing of multiple files, which can be considered in future project expansions.

50

6.1. Projects plans 51

Another aspect for further development is adjusting benchmark parameters based on the analysis

of results from multiple files, utilizing machine learning.

The project is dynamic and forward-looking, particularly given the increasing reliance on

microservices-based applications. Currently, there is a tendency to avoid solutions with a cen-

tralized structure, significantly strengthening the project’s market potential.

Bibliography

[1] dagre. https://github.com/dagrejs/dagre.

[2] Death star benchmark. https://github.com/delimitrou/DeathStarBench.

[3] Invalid parent github issue 1/2. https://github.com/jaegertracing/jaeger/issues/3084.

[4] Invalid parent github issue 2/2. https://github.com/jaegertracing/jaeger/issues/2121.

[5] Opentracing repository. https://github.com/opentracing.

[6] Spec cpu benchmark. https://www.spec.org/cpu2017/.

[7] Tpc benchmark. https://www.tpc.org.

[8] Brendan Eich. Javascript, frontend programming language.

https://pl.wikipedia.org/wiki/JavaScript.

[9] Cloud Native Computing Foundation. Jaeger: open source, distributed tracing platform.

https://www.jaegertracing.io.

[10] Cloud Native Computing Foundation. Jaeger tracing repository.

https://github.com/jaegertracing/jaeger.

[11] Cloud Native Computing Foundation. Opentelemetry repository.

https://github.com/open-telemetry.

[12] Inc. GitHub. Github, version control. https://github.com/.

[13] Google. Production-grade container orchestration. https://kubernetes.io.

[14] Docker inc. Docker, containers. https://docs.docker.com/desktop/.

[15] Maxon. One of the most popular cpu benchmarks available.

https://www.maxon.net/en/tech-info-cinebench.

[16] Inc. Meta Platforms. React, frontend programming language. https://pl.legacy.reactjs.org/.

[17] Observable. Visualize transfer time on web app. https://observablehq.com/documentation.

[18] Inc. Observable. D3.js, visualization library for javascript. https://d3js.org/.

[19] Tiso Alvarez Puccinelli. react-flow-smart-edge.

https://github.com/tisoap/react-flow-smart-edge.

[20] Armin Ronacher. Flask, backend framework. https://flask.palletsprojects.com/en/3.0.x/.

[21] Python software. Python, programming language. https://pl.wikipedia.org/wiki/Python.

[22] Uber Technologies. React-vis, visualization library for react.

https://uber.github.io/react-vis/documentation/welcome-to-react-vis.

[23] TPC. Leading benchmarking and load testing software for the worlds most popular databases.

https://www.hammerdb.com.

52

https://github.com/dagrejs/dagre
https://github.com/delimitrou/DeathStarBench
https://github.com/jaegertracing/jaeger/issues/3084
https://github.com/jaegertracing/jaeger/issues/2121
https://github.com/opentracing
https://www.spec.org/cpu2017/
https://www.tpc.org
https://pl.wikipedia.org/wiki/JavaScript
https://www.jaegertracing.io
https://github.com/jaegertracing/jaeger
https://github.com/open-telemetry
https://github.com/
https://kubernetes.io
https://docs.docker.com/desktop/
https://www.maxon.net/en/tech-info-cinebench
https://pl.legacy.reactjs.org/
https://observablehq.com/documentation
https://d3js.org/
https://github.com/tisoap/react-flow-smart-edge
https://flask.palletsprojects.com/en/3.0.x/
https://pl.wikipedia.org/wiki/Python
https://uber.github.io/react-vis/documentation/welcome-to-react-vis
https://www.hammerdb.com

53

[24] Cornell University. Social network architecture - an application deployed by dsb. https://github.

com/delimitrou/DeathStarBench/blob/master/socialNetwork/figures/socialNet_arch.png.

[25] Cornell University. An open-source benchmark suite for microservices and their hardware-software

implications for cloud edge systems.

https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf, 2019.

[26] xyflow. reactflow. https://reactflow.dev/.

https://github.com/delimitrou/DeathStarBench/blob/master/socialNetwork/figures/socialNet_arch.png
https://github.com/delimitrou/DeathStarBench/blob/master/socialNetwork/figures/socialNet_arch.png
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.microservices.pdf
https://reactflow.dev/

	1 Introduction
	1.1 The purpose and scope of the thesis
	1.2 Tasks distribution
	1.3 Chapters contents

	2 Performance evaluation for modern IT infrastructure
	2.1 Features of modern infrastructure and architecture solutions
	2.1.1 Microservices
	2.1.2 Distributed systems - clusters
	2.1.3 Cloud

	2.2 Benchmarking
	DeathStarBench

	2.3 Tracing
	2.3.1 Trace
	2.3.2 Span
	2.3.3 Traces and spans visualized
	2.3.4 Jaeger Tracing
	2.3.5 OpenTracing
	2.3.6 OpenTelemetry

	3 Tools and input analysis
	3.1 Schema of creating data to visualization
	3.2 Data to visualize
	3.2.1 Data from Jaeger
	3.2.2 Relations between spans and traces
	3.2.3 Groups of traces

	3.3 Transfer times
	3.3.1 The problem of communication time
	3.3.2 What is the communication time?
	3.3.3 How to calculate transfer time?

	4 Project
	4.1 Functional and Non-functional requirements
	4.1.1 Functional requirements
	4.1.2 Non-functional requirements

	4.2 System architecture
	4.2.1 Context diagram
	4.2.2 Use cases

	4.3 System architecture
	4.4 Interface mockup
	4.5 Testing

	5 Implementation and tests
	5.1 Used technologies
	5.1.1 Docker
	5.1.2 GitHub
	5.1.3 Python
	5.1.4 Flask
	5.1.5 JavaScript
	5.1.6 React.js
	5.1.7 React-Vis
	5.1.8 D3.js

	5.2 Installation
	5.3 Usage and logic
	5.3.1 Header
	5.3.2 Input
	5.3.3 Scatter plots
	5.3.4 Histograms
	5.3.5 Call Graph
	TraceCallGraph
	GroupCallGraph
	Implementation

	5.3.6 Table

	5.4 Discovered artifacts
	5.4.1 Negative transfer times
	5.4.2 Invalid parent span

	5.5 Transfer time
	5.5.1 Calculation of transfer times
	5.5.2 Transfer times graph visualization

	5.6 Testing
	5.6.1 Functional correctness
	5.6.2 Performance

	6 Conclusions
	6.1 Projects plans

	Bibliography

